Electronic Principles

Chapter 1 Introduction

SELF-TEST

1.a	7. b	13. c	19. b
2.c	8. c	14. d	20.c
3. a	9. b	15. b	21. b
4. b	10. a	16. b	22. b
5.d	11. a	17. a	23. c
6.d	12. a	18. b	

JOB INTERVIEW QUESTIONS

Note: The text and illustrations cover many of the job interview questions in detail. An answer is given to job interview questions only when the text has insufficient information.
2. It depends on how accurate your calculations need to be. If an accuracy of 1 percent is adequate, you should include the source resistance whenever it is greater than 1 percent of the load resistance.
5. Measure the open-load voltage to get the Thevenin voltage $V_{T H}$. To get the Thevenin resistance, reduce all sources to zero and measure the resistance between the $A B$ terminals to get $R_{T H}$. If this is not possible, measure the voltage V_{L} across a load resistor and calculate the load current I_{L}. Then divide $V_{T H}-V_{L}$ by I_{L} to get $R_{T H}$.
6. The advantage of a 50Ω voltage source over a 600Ω voltage source is the ability to be a stiff voltage source to a lower value resistance load. The load must be 100 greater than the internal resistance in order for the voltage source to be considered stiff.
7. The expression cold-cranking amperes refers to the amount of current a car battery can deliver in freezing weather when it is needed most. What limits actual current is the Thevenin resistance caused by chemical and physical parameters inside the battery, not to mention the quality of the connections outside.
8. It means that the load resistance is not large compared to the Thevenin resistance, so that a large load current exists.
9. Ideal. Because troubles usually produce large changes in voltage and current, so that the ideal approximation is adequate for most troubles.
10. You should infer nothing from a reading that is only 5 percent from the ideal value. Actual circuit troubles will usually cause large changes in circuit voltages. Small changes can result from component variations that are still within the allowable tolerance.
11. Either may be able to simplify the analysis, save time when calculating load current for several load resistances, and give
us more insight into how changes in load resistance affect the load voltage.
12. It is usually easy to measure open-circuit voltage and shorted-load current. By using a load resistor and measuring voltage under load, it is easy to calculate the Thevenin or Norton resistance.

PROBLEMS

1-1. Given:
$V=12 \mathrm{~V}$
$R_{S}=0.1 \Omega$
Solution:
$R_{L}=100 R_{S}$
$R_{L}=100(0.1 \Omega)$
$R_{L}=10 \Omega$
Answer: The voltage source will appear stiff for values of load resistance of $\geq 10 \Omega$.
1-2. Given:
$R_{L \min }=270 \Omega$
$R_{L \max }=100 \mathrm{k} \Omega$
Solution:
$R_{S}<0.01 R_{L} \quad$ (Eq. 1-1)
$R_{S}<0.01(270 \Omega)$
$R_{S}<2.7 \Omega$
Answer: The largest internal resistance the source can have is 2.7Ω.
1-3. Given: $R_{S}=50 \Omega$
Solution:
$R_{L}=100 R_{S}$
$R_{L}=100(50 \Omega)$
$R_{L}=5 \mathrm{k} \Omega$
Answer: The function generator will appear stiff for values of load resistance of $\geq 5 \mathrm{k} \Omega$.
1-4. Given: $R_{S}=0.04 \Omega$
Solution:
$R_{L}=100 R_{S}$
$R_{L}=100(0.04 \Omega)$
$R_{L}=4 \Omega$
Answer: The car battery will appear stiff for values of load resistance of $\geq 4 \Omega$.

1-5. Given:
$R_{S}=0.05 \Omega$
$I=2 \mathrm{~A}$
Solution:
$V=I R \quad$ (Ohm's law)
$V=(2 \mathrm{~A})(0.05 \Omega)$
$V=0.1 \mathrm{~V}$
Answer: The voltage drop across the internal resistance is 0.1 V .
1-6. Given:
$V=9 \mathrm{~V}$
$R_{S}=0.4 \Omega$
Solution:
$I=V / R \quad$ (Ohm's law)
$I=(9 \mathrm{~V}) /(0.4 \Omega)$
$I=22.5 \mathrm{~A}$
Answer: The load current is 22.5 A .
1-7. Given:
$I_{S}=10 \mathrm{~mA}$
$R_{S}=10 \mathrm{M} \Omega$
Solution.
$R_{L}=0.01 R_{S}$
$R_{L}=0.01(10 \mathrm{M} \Omega)$
$R_{L}=100 \mathrm{k} \Omega$
Answer: The current source will appear stiff for load resistance of $\leq 100 \mathrm{k} \Omega$.
1-8. Given:
$R_{L \text { min }}=270 \Omega$
$R_{L \text { max }}=100 \mathrm{k} \Omega$
Solution:
$R_{S}>100 R_{L} \quad$ (Eq. 1-3)
$R_{S}>100(100 \mathrm{k} \Omega)$
$R_{S}>10 \mathrm{M} \Omega$
Answer: The internal resistance of the source is greater than $10 \mathrm{M} \Omega$.
1-9. Given: $R_{S}=100 \mathrm{k} \Omega$
Solution:
$R_{L}=0.01 R_{S} \quad$ (Eq. 1-4)
$R_{L}=0.01(100 \mathrm{k} \Omega)$
$R_{L}=1 \mathrm{k} \Omega$
Answer: The maximum load resistance for the current source to appear stiff is $1 \mathrm{k} \Omega$.
1-10. Given:
$I_{S}=20 \mathrm{~mA}$
$R_{S}=200 \mathrm{k} \Omega$
$R_{L}=0 \Omega$
Solution:
$R_{L}=0.01 R_{S}$
$R_{L}=0.01(200 \mathrm{k} \Omega)$
$R_{L}=2 \mathrm{k} \Omega$
Answer: Since 0Ω is less than the maximum load resistance of $2 \mathrm{k} \Omega$, the current source appea rs stiff; thus the current is 20 mA .

1-11. Given:
$I=5 \mathrm{~mA}$
$R_{S}=250 \mathrm{k} \Omega$
$R_{L}=10 \mathrm{k} \Omega$

Solution:
$R_{L}=0.01 R_{S} \quad$ (Eq. 1-4)
$R_{L}=0.01(250 \mathrm{k} \Omega)$
$R_{L}=2.5 \mathrm{k} \Omega$
$I_{L}=I_{T}\left[\left(R_{S}\right) /\left(R_{S}+R_{L}\right)\right] \quad$ (Current divider formula)
$I_{L}=5 \mathrm{~mA}[(250 \mathrm{k} \Omega) /(250 \mathrm{k} \Omega+10 \mathrm{k} \Omega)]$
$I_{L}=4.80 \mathrm{~mA}$
Answer: The load current is 4.80 mA , and, no, the current source is not stiff since the load resistance is not less than or equal to $2.5 \mathrm{k} \Omega$.
1-12. Solution:
$V_{T H}=V_{R 2}$
$V_{R 2}=V_{S}\left[\left(R_{2}\right) /\left(R_{1}+R_{2}\right)\right] \quad$ (Voltage divider formula)
$V_{R 2}=36 \mathrm{~V}[(3 \mathrm{k} \Omega) /(6 \mathrm{k} \Omega+3 \mathrm{k} \Omega)]$
$V_{R 2}=12 \mathrm{~V}$
$R_{T H}=\left[R_{1} R_{2} / R_{1}+R_{2}\right] \quad$ (Parallel resistance formula)
$R_{T H}=[(6 \mathrm{k} \Omega)(3 \mathrm{k} \Omega) /(6 \mathrm{k} \Omega+3 \mathrm{k} \Omega)]$
$R_{T H}=2 \mathrm{k} \Omega$
Answer: The Thevenin voltage is 12 V , and the Thevenin resistance is $2 \mathrm{k} \Omega$.

(a) Circuit for finding $V_{T H}$ in Prob. 1-12. (b) Circuit for finding $R_{T H}$ in Prob. 1-12.

1-13. Given:
$V_{T H}=12 \mathrm{~V}$
$R_{\text {TH }}=2 \mathrm{k} \Omega$
Solution:
$I=V / R \quad$ (Ohm's law)
$I=V_{T H} /\left(R_{T H}+R_{L}\right)$
$I_{0 \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+0 \Omega)=6 \mathrm{~mA}$
$I_{1 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=4 \mathrm{~mA}$
$I_{2 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+2 \mathrm{k} \Omega)=3 \mathrm{~mA}$
$I_{3 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+3 \mathrm{k} \Omega)=2.4 \mathrm{~mA}$
$I_{4 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+4 \mathrm{k} \Omega)=2 \mathrm{~mA}$
$I_{5 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+5 \mathrm{k} \Omega)=1.7 \mathrm{~mA}$
$I_{6 \mathrm{k} \Omega}=12 \mathrm{~V} /(2 \mathrm{k} \Omega+6 \mathrm{k} \Omega)=1.5 \mathrm{~mA}$
Answers: $0 \Omega 6 \mathrm{~mA} ; 1 \mathrm{k} \Omega, 4 \mathrm{~mA} ; 2 \mathrm{k} \Omega, 3 \mathrm{~mA} ; 3 \mathrm{k} \Omega, 2.4$
$\mathrm{mA} ; 4 \mathrm{k} \Omega, 2 \mathrm{~mA} ; 5 \mathrm{k} \Omega, 1.7 \mathrm{~mA} ; 6 \mathrm{k} \Omega$, 1.5 mA .

Thevenin equivalent circuit for Prob. 1-13.
1-14. Given:
$V_{S}=18 \mathrm{~V}$
$R_{1}=6 \mathrm{k} \Omega$
$R_{2}=3 \mathrm{k} \Omega$
Solution:
$V_{T H}=V_{R 2}$
$V_{R 2}=V_{S}\left[\left(R_{2}\right) /\left(R_{1}+R_{2}\right)\right] \quad$ (Voltage divider formula)
$V_{R 2}=18 \mathrm{~V}[(3 \mathrm{k} \Omega) /(6 \mathrm{k} \Omega+3 \mathrm{k} \Omega)]$
$V_{R 2}=6 \mathrm{~V}$
$R_{T H}=\left[\left(R_{1} \times R_{2}\right) /\left(R_{1}+R_{2}\right)\right] \quad$ (Parallel resistance formula)
$R_{T H}=[(6 \mathrm{k} \Omega \times 3 \mathrm{k} \Omega) /(6 \mathrm{k} \Omega+3 \mathrm{k} \Omega)]$
$R_{T H}=2 \mathrm{k} \Omega$
Answer: The Thevenin voltage decreases to 6 V , and the Thevenin resistance is unchanged.

1-15. Given:
$V_{S}=36 \mathrm{~V}$
$R_{1}=12 \mathrm{k} \Omega$
$R_{2}=6 \mathrm{k} \Omega$
Solution:
$V_{T H}=V_{R 2}$
$V_{R 2}=V_{S}\left[\left(R_{2}\right) /\left(R_{1}+R_{2}\right)\right] \quad$ (Voltage divider formula)
$V_{R 2}=36 \mathrm{~V}[(6 \mathrm{k} \Omega) /(12 \mathrm{k} \Omega+6 \mathrm{k} \Omega)]$
$V_{R 2}=12 \mathrm{~V}$
$R_{T H}=\left[\left(R_{1} R_{2}\right) /\left(R_{1}+R_{2}\right)\right] \quad$ (Parallel resistance formula)
$R_{T H}=[(12 \mathrm{k} \Omega)(6 \mathrm{k} \Omega) /(12 \mathrm{k} \Omega+6 \mathrm{k} \Omega)]$
$R_{T H}=4 \mathrm{k} \Omega$
Answer: The Thevenin voltage is unchanged, and the Thevenin resistance doubles.

1-16. Given:
$V_{T H}=12 \mathrm{~V}$
$R_{T H}=3 \mathrm{k} \Omega$

Solution:
$R_{N}=R_{T H}$
$R_{N}=3 \mathrm{k} \Omega$
$I_{N}=V_{T H} / R_{T H}$
$I_{N}=12 \mathrm{~V} / 3 \mathrm{k} \Omega$
$I_{N}=4 \mathrm{~mA}$
Answer: $I_{N}=4 \mathrm{~mA}$, and $R_{N}=3 \mathrm{k} \Omega$

Norton circuit for Prob. 1-16.
1-17. Given:
$I_{N}=10 \mathrm{~mA}$
$R_{N}=10 \mathrm{k} \Omega$

Solution:

$$
\begin{aligned}
& R_{N}=R_{T H} \quad(\text { Eq. 1-10) } \\
& R_{T H}=10 \mathrm{k} \Omega \\
& I_{N}=V_{T H} / R_{T H} \quad(\text { Eq. 1-12 }) \\
& V_{T H}=I_{N} R_{N} \\
& V_{T H}=(10 \mathrm{~mA})(10 \mathrm{k} \Omega) \\
& V_{T H}=100 \mathrm{~V}
\end{aligned}
$$

$$
\text { Answer: } R_{T H}=10 \mathrm{k} \Omega \text {, and } V_{T H}=100 \mathrm{~V}
$$

Thevenin circuit for Prob. 1-17.
1-18. Given (from Prob. 1-12):
$V_{T H}=12 \mathrm{~V}$
$R_{T H}=2 \mathrm{k} \Omega$

Solution:
$R_{N}=R_{T H} \quad$ (Eq. 1-10)
$R_{N}=2 \mathrm{k} \Omega$
$I_{N}=V_{T H} / R_{T H} \quad$ (Eq. 1-12)
$I_{N}=12 \mathrm{~V} / 2 \mathrm{k} \Omega$
$I_{N}=6 \mathrm{~mA}$
Answer: $R_{N}=2 \mathrm{k} \Omega$, and $I_{N}=6 \mathrm{~mA}$

Norton circuit for Prob. 1-18.

1-19. Shorted, which would cause load resistor to be connected across the voltage source seeing all of the voltage.
1-20. a. R_{1} is open, preventing any of the voltage from reaching the load resistor. b. R_{2} is shorted, making its voltage drop zero. Since the load resistor is in parallel with R_{2}, its voltage drop would also be zero.
$\mathbf{1 - 2 1}$. The battery or interconnecting wiring.
1-22. $R_{T H}=2 \mathrm{k} \Omega$
Solution:
$R_{\text {Meter }}=100$ RTH $_{\text {TH }}$
$R_{\text {Meter }}=100(2 \mathrm{k} \Omega)$
$R_{\text {Meter }}=200 \mathrm{k} \Omega$
Answer: The meter will not load down the circuit if the meter impedance is $\geq 200 \mathrm{k} \Omega$.

CRITICAL THINKING

1-23. Given:

$$
\begin{aligned}
& V_{S}=12 \mathrm{~V} \\
& I_{S}=150 \mathrm{~A} \\
& \text { Solution: } \\
& R_{S}=\left(V_{S}\right) /\left(I_{S}\right) \\
& R_{S}=(12 \mathrm{~V}) /(150 \mathrm{~A}) \\
& R_{S}=80 \mathrm{~m} \Omega
\end{aligned}
$$

Answer: If an ideal 12 V voltage source is shorted and provides 150 A , the internal resistance is $80 \mathrm{~m} \Omega$.
1-24. Given:
$V_{S}=10 \mathrm{~V}$
$V_{L}=9 \mathrm{~V}$
$R_{L}=75 \Omega$
Solution:
$V_{S}=V_{R S}+V_{L} \quad$ (Kirchhoff's law)
$V_{R S}=V_{S}-V_{L}$
$V_{R S}=10 \mathrm{~V}-9 \mathrm{~V}$
$V_{R S}=1 \mathrm{~V}$
$I_{R S}=I_{L}=V_{L} / R_{L} \quad$ (Ohm's law)
$I_{R S}=9 \mathrm{~V} / 75 \Omega$
$I_{R S}=120 \mathrm{~mA}$
$R_{S}=V_{R S} / I_{R S} \quad$ (Ohm's law)
$R_{S}=8.33 \Omega$
$R_{S}<0.01 R_{L} \quad$ (Eq. 1-1)
$8.33 \Omega<0.01(75 \Omega)$
$8.33 \Omega \nless 0.75 \Omega$
Answer: a. The internal resistance $\left(R_{S}\right)$ is 8.33Ω. b. The source is not stiff since $R_{S} \nless 0.01 R_{L}$.
1-25. Answer: Disconnect the resistor and measure the voltage.
1-26. Answer: Disconnect the load resistor, turn the internal voltage and current sources to zero, and measure the resistance.
1-27. Answer: Thevenin's theorem makes it much easier to solve problems where there could be many values of a resistor.
1-28. Answer: To find the Thevenin voltage, disconnect the load resistor and measure the voltage. To find the Thevenin resistance, disconnect the battery and the load resistor, short the battery terminals, and measure the resistance at the load terminals.
1-29. Given:
$R_{L}=1 \mathrm{k} \Omega$
$I=1 \mathrm{~mA}$
Solution:
$R_{S}>100 R_{L}$
$R_{S}>100(1 \mathrm{k} \Omega)$
$R_{L}>100 \mathrm{k} \Omega$
$V=I R$
$V=(1 \mathrm{~mA})(100 \mathrm{k} \Omega)$
$V=100 \mathrm{~V}$
Answer: A 100 V battery in series with a $100 \mathrm{k} \Omega$ resistor.
1-30. Given:
$V_{S}=30 \mathrm{~V}$
$V_{L}=15 \mathrm{~V}$
$R_{T H}<2 \mathrm{k} \Omega$
Solution: Assume a value for one of the resistors. Since the Thevenin resistance is limited to $2 \mathrm{k} \Omega$, pick a value less than $2 \mathrm{k} \Omega$. Assume $R_{2}=1 \mathrm{k} \Omega$.
$V_{L}=V_{S}\left[R_{2} /\left(R_{1}+R_{2}\right)\right] \quad$ (Voltage divider formula)
$R_{1}=\left[\left(V_{S}\right)\left(R_{2}\right) / V_{L}\right]-R_{2}$
$R_{1}=[(30 \mathrm{~V})(1 \mathrm{k} \Omega) /(15 \mathrm{~V})]-1 \mathrm{k} \Omega$
$R_{1}=1 \mathrm{k} \Omega$
$R_{T H}=\left(R_{1} R_{2} / R_{1}+R_{2}\right)$
$R_{T H}=[(1 \mathrm{k} \Omega)(1 \mathrm{k} \Omega)] /(1 \mathrm{k} \Omega+1 \mathrm{k} \Omega)$
$R_{T H}=500 \Omega$

Answer: The value for R_{1} and R_{2} is $1 \mathrm{k} \Omega$. Another possible solution is $R_{1}=R_{2}=4 \mathrm{k} \Omega$. Note: The criteria will be satisfied for any resistance value up to $4 \mathrm{k} \Omega$ and when both resistors are the same value.
1-31. Given:
$V_{S}=30 \mathrm{~V}$
$V_{L}=10 \mathrm{~V}$
$R_{L}>1 \mathrm{M} \Omega$
$R_{S}<0.01 R_{L} \quad$ (since the voltage source must be stiff) (Eq. 1-1)
Solution:
$R_{S}<0.01 R_{L}$
$R_{S}<0.01(1 \mathrm{M} \Omega)$
$R_{S}<10 \mathrm{k} \Omega$
Since the Thevenin equivalent resistance would be the series resistance, $R_{T H}<10 \mathrm{k} \Omega$.
Assume a value for one of the resistors. Since the Thevenin resistance is limited to $1 \mathrm{k} \Omega$, pick a value less than $10 \mathrm{k} \Omega$. Assume $R_{2}=5 \mathrm{k} \Omega$.
$V_{L}=V_{S}\left[R_{2} /\left(R_{1}+R_{2}\right)\right] \quad$ (Voltage divider formula)
$R_{1}=\left[\left(V_{S}\right)\left(R_{2}\right) / V_{L}\right]-R_{2}$
$R_{1}=[(30 \mathrm{~V})(5 \mathrm{k} \Omega) /(10 \mathrm{~V})]-5 \mathrm{k} \Omega$
$R_{1}=10 \mathrm{k} \Omega$
$R_{T H}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$
$R_{T H}=[(10 \mathrm{k} \Omega)(5 \mathrm{k} \Omega)] /(10 \mathrm{k} \Omega+5 \mathrm{k} \Omega)$
$R_{T H}=3.33 \mathrm{k} \Omega$
Since $R_{T H}$ is one-third of $10 \mathrm{k} \Omega$, we can use R_{1} and R_{2} values that are three times larger.
Answer:
$R_{1}=30 \mathrm{k} \Omega$
$R_{2}=15 \mathrm{k} \Omega$
Note: The criteria will be satisfied as long as R_{1} is twice R_{2} and R_{2} is not greater than $15 \mathrm{k} \Omega$.
1-32. Answer: First, measure the voltage across the terminals. This is the Thevenin voltage. Next, connect the ammeter to the battery terminals-measure the current. Next, use the values above to find the total resistance. Finally, subtract the internal resistance of the ammeter from this result. This is the Thevenin resistance.
1-33. Answer: First, measure the voltage across the terminals. This is the Thevenin voltage. Next, connect a resistor across the terminals. Next, measure the voltage across the resistor. Then, calculate the current through the load resistor. Then, subtract the load voltage from the Thevenin voltage. Then, divide the difference voltage by the current. The result is the Thevenin resistance.

1-34. Solution: Thevenize the circuit. There should be a Thevenin voltage of 0.148 V and a resistance of $6 \mathrm{k} \Omega$.
$I_{L}=V_{T H} /\left(R_{T H}+R_{L}\right)$
$I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+0)$
$I_{L}=24.7 \mu \mathrm{~A}$
$I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+1 \mathrm{k} \Omega)$
$I_{L}=21.1 \mu \mathrm{~A}$
$I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+2 \mathrm{k} \Omega)$
$I_{L}=18.5 \mu \mathrm{~A}$
$I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+3 \mathrm{k} \Omega)$
$I_{L}=16.4 \mu \mathrm{~A}$

```
\(I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+4 \mathrm{k} \Omega)\)
\(I_{L}=14.8 \mu \mathrm{~A}\)
\(I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+5 \mathrm{k} \Omega)\)
\(I_{L}=13.5 \mu \mathrm{~A}\)
\(I_{L}=0.148 \mathrm{~V} /(6 \mathrm{k} \Omega+6 \mathrm{k} \Omega)\)
\(I_{L}=12.3 \mu \mathrm{~A}\)
Answer: \(0, I_{L}=24.7 \mu \mathrm{~A} ; 1 \mathrm{k} \Omega, I_{L}=21.1 \mu \mathrm{~A} ; 2 \mathrm{k} \Omega, I_{L}=\)
\(18.5 \mu \mathrm{~A} ; 3 \mathrm{k} \Omega, I_{L}=16.4 \mu \mathrm{~A} ; 4 \mathrm{k} \Omega, I_{L}=14.8 \mu \mathrm{~A} ; 5 \mathrm{k} \Omega\),
\(I_{L}=13.5 \mu \mathrm{~A} ; 6 \mathrm{k} \Omega, I_{L}=12.3 \mu \mathrm{~A}\).
```

1-35. Trouble:
1: R_{1} shorted
2: R_{1} open or R_{2} shorted
3: R_{3} open
4: R_{3} shorted
5: R_{2} open or open at point C
6: R_{4} open or open at point D
7: Open at point E
8: R_{4} shorted
1-36. R_{1} shorted
1-37. R_{2} open
1-38. No supply voltage
1-39. R_{4} open
1-40. R_{2} shorted

Part 2

Experiments Manual

Note: The tables in this part contain representative data for the experiments in the ninth edition. Variations from the data may be expected, depending on the accuracy of the equipment used and the tolerance of the components. Measurements were made with both digital and analog test equipment, along with Multisim simulation software.

Experiment 1

table 1-1 Voltage source

R	Estimated V_{L}	Measured V_{L}
0Ω	10 V	10 V
10Ω	10 V	9.99 V
100Ω	9.9 V	9.91 V
470Ω	9.5 V	9.53 V

TABLE 1-2 CURRENT SOURCE

R_{L}	Estimated I_{L}	Measured I_{L}
0Ω	10 mA	9.36 mA
10Ω	9.9 mA	9.28 mA
47Ω	9.5 mA	8.94 mA
100Ω	9 mA	8.56 mA

TABLE 1-3 TROUBLESHOOTING

Trouble	Measured V_{L}
Shorted load	0 V
Open load	10 V
TABLE 1-4 CRITICAL THINKING	
Type	R

ANSWERS

1. d
2. b
3. b
4. b
5. a
6. A stiff voltage source has an internal resistance that is less than $1 / 100$ of the load resistance, whereas a stiff current source
has an internal resistance that is at least 100 times the load resistance.
7. A shorted load has zero resistance. Ohm's law says that the load voltage equals the load current times the load resistance. The product of load current times zero gives zero load voltage.
8. With the load resistor open, the current through the series resistor R of Fig. 1-1 is zero. Therefore, Ohm's law tells us that no voltage is dropped across R. Kirchhoff's voltage law tells us the sum of voltages around the loop is zero; therefore, the load voltage equals the source voltage.
9. $1 \mathrm{M} \Omega$: For the current source to appear stiff, its internal resistance must be at least 100 times the maximum load resistance. In this case, $100(10 \mathrm{k} \Omega)$ is $1 \mathrm{M} \Omega$.
