
CHAPTER 1 – 9th Edition

1.1. If A represents a vector two units in length directed due west, B represents a vector three units in length
directed due north, and A + B = C − D and 2B − A = C + D, find the magnitudes and directions of
C and D. Take north as the positive y direction:

With north as positive y, west will be -x. We may therefore set up:

C + D = 2B − A = 6ay + 2ax and
C − D = A + B = −2ax + 3ay

Add the equations to find C = 4.5ay (north), and then D = 2ax + 1.5ay (east of northeast).

1.2. Vector A extends from the origin to (1,2,3) and vector B from the origin to (2,3,-2).

a) Find the unit vector in the direction of (A − B): First

A − B = (ax + 2ay + 3az) − (2ax + 3ay − 2az) = (−ax − ay + 5az)

whose magnitude is |A − B| =
[

(−ax − ay + 5az) ⋅ (−ax − ay + 5az)
]1∕2 =

√

1 + 1 + 25 =
3
√

3 = 5.20. The unit vector is therefore

aAB = (−ax − ay + 5az)∕5.20

b) find the unit vector in the direction of the line extending from the origin to the midpoint of the
line joining the ends of A and B:
The midpoint is located at

Pmp = [1 + (2 − 1)∕2, 2 + (3 − 2)∕2, 3 + (−2 − 3)∕2)] = (1.5, 2.5, 0.5)

The unit vector is then

amp =
(1.5ax + 2.5ay + 0.5az)
√

(1.5)2 + (2.5)2 + (0.5)2
= (1.5ax + 2.5ay + 0.5az)∕2.96

1.3. The vector from the origin to the point A is given as (6,−2,−4), and the unit vector directed from the
origin toward point B is (2,−2, 1)∕3. If points A and B are ten units apart, find the coordinates of
point B.

With A = (6,−2,−4) and B = 1
3
B(2,−2, 1), we use the fact that |B − A| = 10, or

|(6 − 2
3
B)ax − (2 −

2
3
B)ay − (4 +

1
3
B)az| = 10

Expanding, obtain
36 − 8B + 4

9B
2 + 4 − 8

3B +
4
9B

2 + 16 + 8
3B +

1
9B

2 = 100

or B2 − 8B − 44 = 0. Thus B = 8±
√

64−176
2

= 11.75 (taking positive option) and so

B = 2
3
(11.75)ax −

2
3
(11.75)ay +

1
3
(11.75)az = 7.83ax − 7.83ay + 3.92az
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1.4. A circle, centered at the origin with a radius of 2 units, lies in the xy plane. Determine the unit vector
in rectangular components that lies in the xy plane, is tangent to the circle at (

√

3,−1, 0), and is in the
general direction of increasing values of x:

A unit vector tangent to this circle in the general increasing x direction is t = +a�. Its x and
y components are tx = a� ⋅ ax = − sin�, and ty = a� ⋅ ay = cos�. At the point (

√

3,−1),
� = 330◦, and so t = − sin 330◦ax + cos 330◦ay = 0.5(ax +

√

3ay).

1.5. An equilateral triangle lies in the xy plane with its centroid at the origin. One vertex lies on the positive
y axis.

a) Find unit vectors that are directed from the origin to
the three vertices: Referring to the figure,the easy
one is a1 = ay. Then, a2 will have negative x and y
components, and can be constructed as a2 = G(−ax
− tan 30◦ ay) where G = (1 + tan 30◦)1∕2 = 0.87.
So finally a2 = −0.87(ax + 0.58ay). Then, a3 is the
same as a2, but with the x component reversed:
a3 = 0.87(ax − 0.58ay).

b) Find unit vectors that are directed from the origin
to the three sides, intersecting these at right angles:

30°

x 

y 

a1

a6
a5

a3a2

a4

These will be a4, a5, and a6 in the figure, which are in turn just the part a results, oppositely
directed:
a4 = −a1 = −ay, a5 = −a3 = −0.87(ax − 0.58ay), and a6 = −a2 = +0.87(ax + 0.58ay).

1.6. Find the acute angle between the two vectors A = 2ax + ay + 3az and B = ax − 3ay + 2az by using
the definition of:

a) the dot product: First, A ⋅ B = 2 − 3 + 6 = 5 = AB cos �, where A =
√

22 + 12 + 32 =
√

14,
and where B =

√

12 + 32 + 22 =
√

14. Therefore cos � = 5∕14, so that � = 69.1◦.
b) the cross product: Begin with

A × B =
|

|

|

|

|

|

|

ax ay az
2 1 3
1 −3 2

|

|

|

|

|

|

|

= 11ax − ay − 7az

and then |A × B| =
√

112 + 12 + 72 =
√

171. So now, with |A × B| = AB sin � =
√

171,
find � = sin−1

(
√

171∕14
)

= 69.1◦

1.7. Given the field F = xax + yay. If F ⋅G = 2xy and F ×G = (x2 − y2) az, find G:
Let G = g1 ax + g2 ay + g3 az Then F ⋅G = g1x + g2y = 2xy, and

F ×G =
|

|

|

|

|

|

|

ax ay az
x y 0
g1 g2 g3

|

|

|

|

|

|

|

= g3y ax − g3x ay + (g2x − g1y) az = (x2 − y2) az

From the last equation, it is clear that g3 = 0, and that g1 = y and g2 = x. This is confirmed in the
F ⋅G equation. So finally G = yax + xay.
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1.8. Demonstrate the ambiguity that results when the cross product is used to find the angle between two
vectors by finding the angle between A = 3ax−2ay+4az and B = 2ax+ay−2az. Does this ambiguity
exist when the dot product is used?

We use the relation A × B = |A||B| sin �n. With the given vectors we find

A × B = 14ay + 7az = 7
√

5

[

2ay + az
√

5

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
±n

=
√

9 + 4 + 16
√

4 + 1 + 4 sin � n

where n is identified as shown; we see that n can be positive or negative, as sin � can be pos-
itive or negative. This apparent sign ambiguity is not the real problem, however, as we re-
ally want the magnitude of the angle anyway. Choosing the positive sign, we are left with
sin � = 7

√

5∕(
√

29
√

9) = 0.969. Two values of � (75.7◦ and 104.3◦) satisfy this equation,
and hence the real ambiguity.
In using the dot product, we find A ⋅ B = 6 − 2 − 8 = −4 = |A||B| cos � = 3

√

29 cos �, or
cos � = −4∕(3

√

29) = −0.248 ⇒ � = −75.7◦. Again, the minus sign is not important, as we
care only about the angle magnitude. The main point is that only one � value results when using
the dot product, so no ambiguity.

1.9. A field is given as
G = 25

(x2 + y2)
(xax + yay)

Find:

a) a unit vector in the direction of G at P (3, 4,−2): Have Gp = 25∕(9+ 16) × (3, 4, 0) = 3ax +4ay,
and |Gp| = 5. Thus aG = (0.6, 0.8, 0).

b) the angle between G and ax at P : The angle is found through aG ⋅ ax = cos �. So cos � =
(0.6, 0.8, 0) ⋅ (1, 0, 0) = 0.6. Thus � = 53◦.

c) the value of the following double integral on the plane y = 7:

∫

4

0 ∫

2

0
G ⋅ aydzdx

∫

4

0 ∫

2

0

25
x2 + y2

(xax + yay) ⋅ aydzdx = ∫

4

0 ∫

2

0

25
x2 + 49

× 7 dzdx = ∫

4

0

350
x2 + 49

dx

= 350 × 1
7

[

tan−1
(4
7

)

− 0
]

= 26

1.10. By expressing diagonals as vectors and using the definition of the dot product, find the smaller angle
between any two diagonals of a cube, where each diagonal connects diametrically opposite corners,
and passes through the center of the cube:

Assuming a side length, b, two diagonal vectors would be A = b(ax + ay + az) and B =
b(ax − ay + az). Now use A ⋅ B = |A||B| cos �, or b2(1 − 1 + 1) = (

√

3b)(
√

3b) cos � ⇒
cos � = 1∕3 ⇒ � = 70.53◦. This result (in magnitude) is the same for any two diagonal vectors.
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1.11. Given the points M(0.1,−0.2,−0.1), N(−0.2, 0.1, 0.3), and P (0.4, 0, 0.1), find:

a) the vector RMN : RMN = (−0.2, 0.1, 0.3) − (0.1,−0.2,−0.1) = (−0.3, 0.3, 0.4).
b) the dot product RMN ⋅ RMP : RMP = (0.4, 0, 0.1) − (0.1,−0.2,−0.1) = (0.3, 0.2, 0.2). RMN ⋅

RMP = (−0.3, 0.3, 0.4) ⋅ (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05.
c) the scalar projection of RMN on RMP :

RMN ⋅ aRMP = (−0.3, 0.3, 0.4) ⋅
(0.3, 0.2, 0.2)

√

0.09 + 0.04 + 0.04
= 0.05

√

0.17
= 0.12

d) the angle between RMN and RMP :

�M = cos−1
( RMN ⋅ RMP
|RMN ||RMP |

)

= cos−1
(

0.05
√

0.34
√

0.17

)

= 78◦

1.12. Write an expression in rectangular components for the vector that extends from (x1, y1, z1) to (x2, y2, z2)
and determine the magnitude of this vector.

The two points can be written as vectors from the origin:

A1 = x1ax + y1ay + z1az and A2 = x2ax + y2ay + z2az

The desired vector will now be the difference:

A12 = A2 − A1 = (x2 − x1)ax + (y2 − y1)ay + (z2 − z1)az

whose magnitude is

|A12| =
√

A12 ⋅ A12 =
[

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
]1∕2

1.13. a) Find the vector component of F = (10,−6, 5) that is parallel to G = (0.1, 0.2, 0.3):

F
||G =

F ⋅G
|G|2

G =
(10,−6, 5) ⋅ (0.1, 0.2, 0.3)
0.01 + 0.04 + 0.09

(0.1, 0.2, 0.3) = (0.93, 1.86, 2.79)

b) Find the vector component of F that is perpendicular to G:

FpG = F − F
||G = (10,−6, 5) − (0.93, 1.86, 2.79) = (9.07,−7.86, 2.21)

c) Find the vector component of G that is perpendicular to F:

GpF = G−G
||F = G− G ⋅ F

|F|2
F = (0.1, 0.2, 0.3)− 1.3

100 + 36 + 25
(10,−6, 5) = (0.02, 0.25, 0.26)

4
Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.



1.14. Given that A+B+C = 0, where the three vectors represent line segments and extend from a common
origin,

a) must the three vectors be coplanar?

In terms of the components, the vector sum will be

A + B + C = (Ax + Bx + Cx)ax + (Ay + By + Cy)ay + (Az + Bz + Cz)az

which we require to be zero. Suppose the coordinate system is configured so that vectors A and
B lie in the x-y plane; in this case Az = Bz = 0. Then Cz has to be zero in order for the three
vectors to sum to zero. Therefore, the three vectors must be coplanar.

b) If A + B + C + D = 0, are the four vectors coplanar?

The vector sum is now

A + B + C + D = (Ax + Bx + Cx +Dx)ax + (Ay + By + Cy +Dy)ay + (Az + Bz + Cz +Dz)az

Now, for example, if A and B lie in the x-y plane, C and D need not, as long as Cz +Dz = 0. So
the four vectors need not be coplanar to have a zero sum.

1.15. Three vectors extending from the origin are given as r1 = (7, 3,−2), r2 = (−2, 7,−3), and
r3 = (0, 2, 3). Find:

a) a unit vector perpendicular to both r1 and r2:

ap12 =
r1 × r2
|r1 × r2|

=
(5, 25, 55)
60.6

= (0.08, 0.41, 0.91)

b) a unit vector perpendicular to the vectors r1 − r2 and r2 − r3: r1 − r2 = (9,−4, 1) and r2 − r3 =
(−2, 5,−6). So r1 − r2 × r2 − r3 = (19, 52, 37). Then

ap =
(19, 52, 37)
|(19, 52, 37)|

=
(19, 52, 37)
66.6

= (0.29, 0.78, 0.56)

c) the area of the triangle defined by r1 and r2:

Area = 1
2
|r1 × r2| = 30.3

d) the area of the triangle defined by the heads of r1, r2, and r3:

Area = 1
2
|(r2 − r1) × (r2 − r3)| =

1
2
|(−9, 4,−1) × (−2, 5,−6)| = 33.3
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1.16. In geometrical optics, the path of a light ray is treated as a vector having the usual three components in
a rectangular coordinate system. When light reflects from a plane surface, the effect is to reverse the
vector component of the ray that is normal to the surface. This yields a reflection angle that is equal
to the incidence angle. Explain what happens when light ray reflects from a corner cube reflector,
consisting of three mutually orthogonal surfaces that occupy, for example, the xy, xz, and yz planes.
The ray is incident in an arbitrary direction within the first octant of the coordinate system, and has
negative x, y, and z directions of travel: We can model the incident ray as the vector, Ri = a(−ax) +
b(−ay) + c(−az), where a, b, and c are arbitrary positive values. With the three orthogonal planes
positioned as given, their effect is to reverse all three components of the incident vector, giving Rr =
a(ax) + b(ay) + c(az) = −Ri. So the light propagates in precisely the reverse direction after reflection,
no matter what direction it arrived from.

1.17. PointA(−4, 2, 5) and the two vectors, RAM = (20, 18,−10) and RAN = (−10, 8, 15), define a triangle.

a) Find a unit vector perpendicular to the triangle: Use

ap =
RAM × RAN
|RAM × RAN |

=
(350,−200, 340)

527.35
= (0.664,−0.379, 0.645)

The vector in the opposite direction to this one is also a valid answer.
b) Find a unit vector in the plane of the triangle and perpendicular to RAN :

aAN =
(−10, 8, 15)

√

389
= (−0.507, 0.406, 0.761)

Then

apAN = ap × aAN = (0.664,−0.379, 0.645) × (−0.507, 0.406, 0.761) = (−0.550,−0.832, 0.077)

The vector in the opposite direction to this one is also a valid answer.
c) Find a unit vector in the plane of the triangle that bisects the interior angle at A: A non-unit

vector in the required direction is (1∕2)(aAM + aAN ), where

aAM =
(20, 18,−10)
|(20, 18,−10)|

= (0.697, 0.627,−0.348)

Now
1
2
(aAM + aAN ) =

1
2
[(0.697, 0.627,−0.348) + (−0.507, 0.406, 0.761)] = (0.095, 0.516, 0.207)

Finally,
abis =

(0.095, 0.516, 0.207)
|(0.095, 0.516, 0.207)|

= (0.168, 0.915, 0.367)
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1.18. Given two vector fields, E = (A∕r) sin � a� and H = (B∕r) sin � a�, where A and B are constants,

a) evaluate S = E ×H and express the result in rectangular coordinates: Begin with

S = E ×H = AB
r2

sin2 � ar

Now, find the three rectangular components by using:

Sx = S ⋅ ax =
AB
r2

sin2 � ar ⋅ ax = AB
x(x2 + y2)

(x2 + y2 + z2)5∕2

where we have used ar ⋅ ax = sin � cos� with r = (x2 + y2 + z2)1∕2,
sin � = (x2 + y2)1∕2∕(x2 + y2 + z2)1∕2 and cos� = x∕(x2 + y2)1∕2.
Then

Sy = S ⋅ ay =
AB
r2

sin2 � ar ⋅ ay = AB
y(x2 + y2)

(x2 + y2 + z2)5∕2

where we have used ar ⋅ ay = sin � sin� with sin� = y∕(x2 + y2)1∕2.
Finally

Sz = S ⋅ az =
AB
r2

sin2 � ar ⋅ az = AB
z(x2 + y2)

(x2 + y2 + z2)5∕2

where ar ⋅ az = cos � = z∕(x2 + y2 + z2)1∕2.
b) Determine S along the x, y, and z axes: Using the part a results, we would have

S(x, 0, 0) = AB
x2

ax, S(0, y, 0) = AB
y2

ay, S(0, 0, z) = 0

1.19. Consider the important inverse-square dependent radial field in spherical coordinates: F = A∕r2 ar
where A is a constant.

a) Transform the given field into cylindrical coordinates: Using r2 = �2 + z2, the given field may
be written:

F = A
�2 + z2

[

f� a� + f� a� + fz az
]

Now
f� = ar ⋅ a� = sin � =

�
r
=

�
(�2 + z2)1∕2

f� = ar ⋅ a� = 0

fz = ar ⋅ az = cos � =
z
r
= z
(�2 + z2)1∕2

Substituting all, we find
F = A

�2 + z2
[

�a� + zaz
]

b) Transform the given field into rectangular coordinates: The quickest way is to use the results of
part a by using � =

√

x2 + y2 and a� = cos� ax + sin� ay, where cos� = x∕
√

x2 + y2 and
sin� = y∕

√

x2 + y2. Incorporating the above leads to:

F = A
(x2 + y2 + z2)3∕2

[

xax + yay + zaz
]
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1.20. If the three sides of a triangle are represented by the vectorsA, B, andC, all directed counter-clockwise,
show that |C|2 = (A + B) ⋅ (A + B) and expand the product to obtain the law of cosines.

With the vectors drawn as described above, we find that C = −(A + B) and so |C|2 = C2 = C ⋅ C =
(A + B) ⋅ (A + B) So far so good. Now if we expand the product, obtain

(A + B) ⋅ (A + B) = A2 + B2 + 2A ⋅ B
where A ⋅ B = AB cos(180◦ − �) = −AB cos � where � is the interior angle at the junction of A and
B. Using this, we have C2 = A2 + B2 − 2AB cos �, which is the law of cosines.

1.21. Express in cylindrical components:

a) the vector from C(3, 2,−7) to D(−1,−4, 2):
C(3, 2,−7)→ C(� = 3.61, � = 33.7◦, z = −7) and
D(−1,−4, 2)→ D(� = 4.12, � = −104.0◦, z = 2).
Now RCD = (−4,−6, 9) and R� = RCD ⋅ a� = −4 cos(33.7) − 6 sin(33.7) = −6.66. Then
R� = RCD ⋅ a� = 4 sin(33.7) − 6 cos(33.7) = −2.77. So RCD = −6.66a� − 2.77a� + 9az

b) a unit vector at D directed toward C:
RCD = (4, 6,−9) and R� = RDC ⋅ a� = 4 cos(−104.0) + 6 sin(−104.0) = −6.79. Then R� =
RDC ⋅ a� = 4[− sin(−104.0)] + 6 cos(−104.0) = 2.43. So RDC = −6.79a� + 2.43a� − 9az
Thus aDC = −0.59a� + 0.21a� − 0.78az

c) a unit vector atD directed toward the origin: Start with rD = (−1,−4, 2), and so the vector toward
the origin will be −rD = (1, 4,−2). Thus in cartesian the unit vector is a = (0.22, 0.87,−0.44).
Convert to cylindrical:
a� = (0.22, 0.87,−0.44) ⋅ a� = 0.22 cos(−104.0) + 0.87 sin(−104.0) = −0.90, and
a� = (0.22, 0.87,−0.44) ⋅ a� = 0.22[− sin(−104.0)] + 0.87 cos(−104.0) = 0, so that finally,
a = −0.90a� − 0.44az.

1.22. A sphere of radius a, centered at the origin, rotates about the z axis at angular velocity Ω rad/s. The
rotation direction is clockwise when one is looking in the positive z direction.

a) Using spherical components, write an expression for the velocity field, v, which gives the tan-
gential velocity at any point on the sphere surface:
The tangential velocity is the product of the angular velocity and the perpendicular distance from
the rotation axis. With clockwise rotation, and with sphere radius a, we obtain

v(�) = Ωa sin � a�m∕s

b) Derive an expression for the difference in velocities between two points on the surface having
different latitudes, where the latitude difference is Δ� in radians. Assume Δ� is small:
Method 1: The velocity difference between the two points can be approximated as

Δv
.
= Δ� dv

d�
|

|

|�0

where �0 is the mean angle between the two points, and where Δ� is small enough so that v(�)
can be approximated as a linear function. Using this along with the part a result, we find:

Δv
.
= aΩΔ� cos �0m∕s
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1.22 b) (continued) Method 2 (harder): Write

Δv = aΩ(sin �2 − sin �1)

where �1 and �2 lie on either side of �0, and where �2 − �1 = Δ�. Using a trig identity, the above
expression becomes

Δv = 2aΩcos
(1
2
(�2 + �1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cos �0

sin
(1
2
(�2 − �1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
.
=Δ�∕2

.
= aΩΔ� cos �0m∕s

c) Find the difference in velocities at locations ±1.0◦ on either side of 45◦ north latitude on Earth.
Take the Earth’s radius as 6370 km at 45◦:
We have a = 6370 km, �0 = 45◦ (same in spherical and geographic coordinates), Δ� = 2.0◦ =
0.035 rad, and Ω = 2�∕24 hr = 7.3 × 10−5 rad/s. Using part b, the velocity difference becomes

Δv
.
= (6.37 × 106m)(7.3 × 10−5 rad∕s)(0.035 rad)(

√

2∕2) = 11.5m∕s

with speed increasing southward.

1.23. The surfaces � = 3, � = 5, � = 100◦, � = 130◦, z = 3, and z = 4.5 define a closed surface.

a) Find the enclosed volume:

Vol = ∫

4.5

3 ∫

130◦

100◦ ∫

5

3
� d� d�dz = 6.28

NOTE: The limits on the � integration must be converted to radians (as was done here, but not shown).

b) Find the total area of the enclosing surface:

Area = 2∫

130◦

100◦ ∫

5

3
� d� d� + ∫

4.5

3 ∫

130◦

100◦
3 d�dz

+ ∫

4.5

3 ∫

130◦

100◦
5 d�dz + 2∫

4.5

3 ∫

5

3
d� dz = 20.7

c) Find the total length of the twelve edges of the surfaces:

Length = 4 × 1.5 + 4 × 2 + 2 ×
[ 30◦
360◦

× 2� × 3 + 30◦
360◦

× 2� × 5
]

= 22.4

d) Find the length of the longest straight line that lies entirely within the volume: This will be
between the points A(� = 3, � = 100◦, z = 3) and B(� = 5, � = 130◦, z = 4.5). Performing
point transformations to cartesian coordinates, these become A(x = −0.52, y = 2.95, z = 3)
and B(x = −3.21, y = 3.83, z = 4.5). Taking A and B as vectors directed from the origin, the
requested length is

Length = |B − A| = |(−2.69, 0.88, 1.5)| = 3.21
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1.24. Two unit vectors, a1 and a2 lie in the xy plane and pass through the origin. They make angles �1 and
�2 with the x axis respectively.

a) Express each vector in rectangular components; Have a1 = Ax1ax+Ay1ay, so thatAx1 = a1 ⋅ax =
cos�1. Then, Ay1 = a1 ⋅ ay = cos(90 − �1) = sin�1. Therefore,

a1 = cos�1 ax + sin�1 ay and similarly, a2 = cos�2 ax + sin�2 ay

b) take the dot product and verify the trigonometric identity, cos(�1 − �2) = cos�1 cos�2 +
sin�1 sin�2: From the definition of the dot product,

a1 ⋅ a2 = (1)(1) cos(�1 − �2)
= (cos�1 ax + sin�1 ay) ⋅ (cos�2 ax + sin�2 ay) = cos�1 cos�2 + sin�1 sin�2

c) take the cross product and verify the trigonometric identity sin(�2 − �1) = sin�2 cos�1 −
cos�2 sin�1: From the definition of the cross product, and since a1 and a2 both lie in the x-
y plane,

a1 × a2 = (1)(1) sin(�1 − �2) az =
|

|

|

|

|

|

|

ax ay az
cos�1 sin�1 0
cos�2 sin�2 0

|

|

|

|

|

|

|

=
[

sin�2 cos�1 − cos�2 sin�1
]

az
thus verified.

1.25. Convert the vector field H = A(x2 + y2)−1[x ay − y ax] into cylindrical coordinates. A is a constant:
The z component is obviously zero, so we are left only with the � and � components to find. First,

H� = H ⋅ a� =
A

x2 + y2
[

x ay ⋅ a� − y ax ⋅ a�
]

where ay ⋅ a� = sin� = y∕
√

x2 + y2 and ax ⋅ a� = cos� = x∕
√

x2 + y2. Thus

H� =
A

(x2 + y2)3∕2
[xy − yx] = 0

Then
H� = H ⋅ a� =

A
x2 + y2

[

x ay ⋅ a� − y ax ⋅ a�
]

where ay ⋅ a� = cos� = x∕
√

x2 + y2 and ax ⋅ a� = − sin� = −y∕
√

x2 + y2. Thus

H� =
A

(x2 + y2)3∕2
[

x2 + y2
]

= A
(x2 + y2)1∕2

= A
�

Finally
H = A

�
a�
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1.26. Express the uniform vector field, F = 10 ay in

a) cylindrical components:
F� = 10 ay ⋅ a� = 10 sin�, F� = 10 ay ⋅ a� = 10 cos�, and Fz = 0.
Combining, we obtain F(�, �) = 10(sin� a� + cos� a�).

b) spherical components:
Fr = 10 ay ⋅ ar = 10 sin � sin�; F� = 10 ay ⋅ a� = 10 cos � sin�; F� = 10 ay ⋅ a� = 10 cos�.
Combining, we obtain F(r, �, �) = 10

[

sin � sin� ar + cos � sin� a� + cos� a�
]

.

1.27. The dipole field is given in spherical coordinates as:

E = A
r3
(2 cos � ar + sin � a�)

where A is a constant and where r > 0.

a) Identify the surface on which the field is entirely perpendicular to the xy plane, and express the
field on that surface in cylindrical coordinates: As there is no a� component, the cylindrical
coordinate field components will be a� and az only. We look for the surface on which the a�
component is zero. So we set up:

E� = E ⋅ a� =
A
r3
(2 cos � ar ⋅ a�

⏟⏟⏟
sin �

+ sin � a� ⋅ a�
⏟⏟⏟
cos �

) = 0

From which the condition for zero E� is identified:

3 cos � sin � = 0 ⇒ � = 0, 90◦

The � = 0 option is only a line (the z axis – and the answer to part b), so the surface on which the
field is perpendicular to the xy plane is the xy plane itself, on which � = 90◦. On that surface:

E(� = 90) = A
r3

a� = −
A
�3

az

b) Identify the coordinate axis on which the field is entirely perpendicular to the xy plane and express
the field there in cylindrical coordinates: This will be the � = 0 solution in part a, which is the z
axis. The field on that axis is

E(� = 0) = 2A
z3

az

c) Specify the surface on which the field is entirely parallel to the xy plane: In this case, we require
a zero z component, so we construct:

Ez = E ⋅ az =
A
r3
(2 cos � ar ⋅ az

⏟⏟⏟
cos �

+ sin � a� ⋅ az
⏟⏟⏟
− sin �

) = 0

This tells us that for a zero z component, we must have

2 cos2 � − sin2 � = 0 ⇒ 3 cos2 � − 1 = 0 ⇒ � = 54.74◦

The surface is a cone of angle 54.74◦ to the z axis, and extending over all values of r within the
limits of validity of the given field.
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1.28. State whether or not A = B and, if not, what conditions are imposed on A and B when

a) A ⋅ ax = B ⋅ ax: For this to be true, both A and B must be oriented at the same angle, �, from
the x axis. But this would allow either vector to lie anywhere along a conical surface of angle �
about the x axis. Therefore, A can be equal to B, but not necessarily.

b) A × ax = B × ax: This is a more restrictive condition because the cross product gives a vector.
For both cross products to lie in the same direction, A, B, and ax must be coplanar. But if A lies
at angle � to the x axis, B could lie at � or at 180◦ − � to give the same cross product. So again,
A can be equal to B, but not necessarily.

c) A ⋅ ax = B ⋅ ax and A × ax = B × ax: In this case, we need to satisfy both requirements in parts
a and b – that is, A, B, and ax must be coplanar, and A and B must lie at the same angle, �, to
ax. With coplanar vectors, this latter condition might imply that both +� and −� would therefore
work. But the negative angle reverses the direction of the cross product direction. Therefore both
vectors must lie in the same plane and lie at the same angle to x; i.e., A must be equal to B.

d) A ⋅C = B ⋅C and A×C = B×C where C is any vector except C = 0: This is just the general case
of part c. Since we can orient our coordinate system in any manner we choose, we can arrange it
so that the x axis coincides with the direction of vector C. Thus all the arguments of part c apply,
and again we conclude that A must be equal to B.

1.29. A vector field is expressed as F = 10zȧz. Evaluate the components of this field that are a) normal, and
b) tangent to a spherical surface of radius a:

a) The normal component is the radial component, found by projecting F into the ar direction. In
general,

Fr = F ⋅ ar = 10zaz ⋅ ar = 10z cos �

where, on the sphere surface, z = a cos �. Therefore Fr (on surface) = 10a cos2 �.

b) The tangential component is found by projecting F into the a� or a� directions. Note that
az ⋅ a� = 0, so we are left with the tangential component lying in only the direction of a�:

F� = 10zaz ⋅ a�|r=a = −10a cos � sin �
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1.30. Consider a problem analogous to the varying wind velocities encountered by transcontinental aircraft.
We assume a constant altitude, a plane earth, a flight along the x axis from 0 to 10 units, no vertical
velocity component, and no change in wind velocity with time. Assume ax to be directed to the east
and ay to the north. The wind velocity at the operating altitude is assumed to be:

v(x, y) =
(0.01x2 − 0.08x + 0.66)ax − (0.05x − 0.4)ay

1 + 0.5y2

a) Determine the location and magnitude of the maximum tailwind encountered: Tailwind would
be x-directed, and so we look at the x component only. Over the flight range, this function
maximizes at a value of 0.86∕(1 + 0.5y2) at x = 10 (at the end of the trip). It reaches a local
minimum of 0.50∕(1 + 0.5y2) at x = 4, and has another local maximum of 0.66∕(1 + 0.5y2) at
the trip start, x = 0.

b) Repeat for headwind: The x component is always positive, and so therefore no headwind exists
over the travel range.

c) Repeat for crosswind: Crosswind will be found from the y component, which is seen to maximize
over the flight range at a value of 0.4∕(1 + 0.5y2) at the trip start (x = 0).

d) Would more favorable tailwinds be available at some other latitude? If so, where? Minimizing
the denominator accomplishes this; in particular, the lattitude associated with y = 0 gives the
strongest tailwind.
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