COMPLETION

1. Reduce the following fraction to its lowest terms.
$54 / 81=$ \qquad
ANS: $2 / 3$
PTS: 1
REF: Page 10
2. Reduce the following fraction to its lowest terms.
$105 / 135=$ \qquad
ANS: 7/9
PTS: 1 REF: Page 10
3. Reduce the following fraction to its lowest terms.
$39 / 65=$ \qquad
ANS: 3/5
PTS: 1
REF: Page 10
4. Change the following improper fraction to a whole or mixed number. If the answer is a mixed number, put a space between the whole number and the fraction.
$325 / 16=$ \qquad
ANS: 20 5/16
PTS: 1
REF: Page 8
5. Change the following improper fraction to a whole or mixed number. If the answer is a mixed number, put a space between the whole number and the fraction.
$1,500 / 100=$ \qquad
ANS: 15
PTS: 1
REF: Page 8
6. Change the following improper fraction to a whole or mixed number. If the answer is a mixed number, put a space between the whole number and the fraction. 193/62 = \qquad
ANS: $37 / 62$
PTS: 1
REF: Page 8
7. Change the following mixed number to an improper fraction.
$121 / 8=$ \qquad
ANS: 97/8
PTS: 1 REF: Page 8
8. Change the following mixed number to an improper fraction.
$292 / 3=$ \qquad
ANS: 89/3
PTS: 1
REF: Page 8
9. Perform the indicated operation and reduce the result to its lowest terms.
$1 / 12+6 / 12+5 / 12=$ \qquad
ANS: 1
PTS: 1 REF: Page 11
10. Perform the indicated operation and reduce the result to its lowest terms.
$3 / 8-1 / 3=$ \qquad
ANS: 1/24
PTS: 1 REF: Page 12
11. Perform the indicated operation and reduce the result to its lowest terms. $4 / 5 \times 5 / 16=$ \qquad
ANS: 1/4
PTS: 1
REF: Page 14
12. Perform the indicated operation and reduce the result to its lowest terms.
$1 / 12 \times 1 / 15=$ \qquad
ANS: 1/180
PTS: 1 REF: Page 14
13. Perform the indicated operation and reduce the result to its lowest terms.
$3 / 5 \div 5=$ \qquad
ANS: 3/25
PTS: 1 REF: Page 15
14. Perform the indicated operation and reduce the result to its lowest terms. $1 / 100 \div 1 / 200=$ \qquad

ANS: 2
PTS: 1 REF: Page 15
15. Indicate which fraction is the largest.
$1 / 100,1 / 150,1 / 200$: \qquad
ANS: 1/100
PTS: 1 REF: Page 8
16. Arrange the following fractions from smallest to largest. After each fraction place a comma followed by a space.
$1 / 6,1 / 5,1 / 8,1 / 4,1 / 3$: \qquad
ANS: $1 / 8,1 / 6,1 / 5,1 / 4,1 / 3$
PTS: 1 REF: Page 8
17. Perform the indicated operation with fractions. Reduce each to its lowest terms.
$1 / 5+1 / 2+1 / 4=$ \qquad
ANS: 19/20

PTS: 1 REF: Page 11
18. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$165 / 6-143 / 8=$ \qquad
ANS: 2 11/24

PTS: 1 REF: Page 13
19. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$610 / 12 \times 15 / 3=$ \qquad
ANS: 34 1/6
PTS: 1 REF: Page 15
20. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$56 \div 9 / 20=$ \qquad
ANS: 124 4/9
PTS: 1
REF: Page 15
21. Indicate the largest number in the following set.

5/6, 5/8:
ANS: 5/6
PTS: 1 REF: Page 8
22. Indicate the largest number in the following set.
$1 / 30,1 / 4,1 / 150$: \qquad
ANS: 1/4
PTS: 1 REF: Page 8
23. Reduce the following fraction to its lowest terms.
$34 / 102=$ \qquad
ANS: $1 / 3$
PTS: 1 REF: Page 10
24. Reduce the following fraction to its lowest terms.
$60 / 1200=$ \qquad
ANS: $1 / 20$
PTS: 1 REF: Page 10
25. Express the following improper fraction as a mixed number. Reduce it to its lowest terms. With a mixed number, put a space between the whole number and the fraction.
$24 / 18=$ \qquad
ANS: $11 / 3$
PTS: 1
REF: Page 8 | Page 10
26. Express the following improper fraction as a mixed number. Reduce it to its lowest terms.

With a mixed number, put a space between the whole number and the fraction.
$15 / 13=$ \qquad
ANS: $12 / 13$
PTS: 1
REF: Page 8 | Page 10
27. Change the following mixed number to an improper fraction.
$91 / 9=$ \qquad
ANS: 82/9
PTS: 1
REF: Page 8
28. Change the following mixed number to an improper fraction.
$67 / 10=$ \qquad
ANS: 67/10
PTS: 1 REF: Page 8
29. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$65 / 16+53 / 16=$ \qquad
ANS: 11 1/2
PTS: 1 REF: Page 12
30. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$43 / 10+22 / 10=$ \qquad
ANS: 6 1/2
PTS: 1 REF: Page 12
31. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$31 / 5+32 / 3+21 / 2=$ \qquad
ANS: 9 11/30
PTS: 1 REF: Page 12
32. Perform the indicated operation with fractions. Reduce each to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$12 / 4+31 / 3=$ \qquad
ANS: 4 5/6
PTS: 1 REF: Page 12
33. Perform the indicated operation with fractions. Reduce the result to its lowest terms.
$15 / 21-10 / 21=$ \qquad
ANS: 5/21
PTS: 1 REF: Page 12
34. Perform the indicated operation with fractions. Reduce the result to its lowest terms. $8 / 16-1 / 4=$ \qquad
ANS: 1/4

PTS: 1
35. Perform the indicated operation with fractions. Reduce the result to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$14-5 / 9=$ \qquad
ANS: 13 4/9
PTS: 1
REF: Page 14
36. Perform the indicated operation with fractions. Reduce the result to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$61 / 4-25 / 8=$ \qquad
ANS: $35 / 8$
PTS: 1
REF: Page 14
37. Perform the indicated operation with fractions. Reduce the result to its lowest terms. If the answer is a mixed number, put a space between the whole number and the fraction.
$51 / 3-17 / 12=$ \qquad
ANS: 3 3/4
PTS: 1 REF: Page 14
38. A patient received $21 / 2$ pills at breakfast and $21 / 3$ pills at lunch. How many pills has the patient received? If the answer is a mixed number, put a space between the whole number and the fraction. \qquad pills

ANS: 4 5/6
PTS: 1 REF: Page 12
39. A patient who weighed $511 / 2$ kilograms (kg) lost $23 / 4 \mathrm{~kg}$ due to illness. How many kilograms does the patient now weigh? If the answer is a mixed number, put a space between the whole number and the fraction. \qquad kg

ANS: 48 3/4
PTS: 1 REF: Page 12
40. A patient drank $1 / 2$ of a 1-litre can of seltzer water. How many millilitres (mL) of seltzer water did the patient drink? \qquad mL

ANS: 500
PTS: 1
REF: Page 14
41. A patient is supposed to drink a 300 -millilitre (mL) bottle of magnesium citrate before an X-ray study. The patient was able to drink 120 mL . How much of the magnesium citrate remains? Express the answer as a fraction reduced to its lowest terms. \qquad mL

ANS: $2 / 5$
PTS: 1 REF: Page 10
42. The nurse is instructed to give a patient $2 / 3$ of a 240 -millilitre (mL) cup of solution. How many mL should the nurse administer? \qquad mL

ANS: 160
PTS: 1 REF: Page 14

ANSWERS

Answers to Practice Problems

1. $\operatorname{LCD}=30$; therefore $\frac{6}{30}$ has the lesser value.
2. $\operatorname{LCD}=8$; therefore $\frac{6}{8}$ has the lesser value.
3. $\frac{1}{150}$ has the lesser value; the denominator (150) is larger.
4. $\frac{6}{18}$ has the lesser value; the numerator (6) is smaller.
5. $\frac{3}{5}$ has the lesser value; the numerator (3) is smaller.
6. $\frac{1}{8}$ has the lesser value; the numerator (1) is smaller.
7. $\frac{1}{40}$ has the lesser value; the denominator (40) is larger.
8. $\frac{1}{300}$ has the lesser value; the denominator (300) is larger.
9. $\frac{4}{24}$ has the lesser value; the numerator (4) is smaller.
10. $\operatorname{LCD}=6$; therefore $\frac{1}{6}$ has the lesser value.
11. $\frac{10 \div 5}{15 \div 5}=\frac{2}{3}$
12. $\frac{9 \div 9}{27 \div 9}=\frac{1}{3}$
13. $\frac{7 \div 7}{49 \div 7}=\frac{1}{7}$
14. $\frac{9 \div 9}{9 \div 9}=\frac{1}{1}=1$
15. $\frac{64 \div 2}{128 \div 2}=\frac{32}{64}=\frac{1}{2}$
16. $\frac{15 \div 15}{45 \div 15}=\frac{1}{3}$
17. $\frac{100 \div 2}{150 \div 2}=\frac{50}{75}=\frac{2}{3}$
18. $\frac{124 \div 31}{155 \div 31}=\frac{4}{5}$
19. $\frac{20 \div 4}{28 \div 4}=\frac{5}{7}$
20. $\frac{12 \div 6}{18 \div 6}=\frac{2}{3}$
21. $\frac{14 \div 2}{98 \div 2}=\frac{7}{49}=\frac{1}{7}$
22. $\frac{36 \div 4}{64 \div 4}=\frac{9}{16}$
23. $\frac{10 \div 2}{18 \div 2}=\frac{5}{9}$
24. $3 \frac{3}{5}$
25. $\frac{24 \div 12}{36 \div 12}=\frac{2}{3}$
26. $4 \frac{2}{7}$
27. $\frac{10 \div 10}{50 \div 10}=\frac{1}{5}$
28. $1 \frac{5}{8}$
29. $\operatorname{LCD}=72$; therefore $\frac{6}{8}$ has the higher value.
30. $\operatorname{LCD}=6$; therefore $\frac{7}{6}$ has the higher value.
31. $\mathrm{LCD}=72$; therefore $\frac{6}{12}$ has the higher value.
32. $\frac{1}{6}$ has the higher value; the denominator (6) is smaller.
33. $\frac{1}{75}$ has the higher value; the denominator (75) is smaller.
34. $\frac{6}{5}$ has the higher value; the numerator (6) is larger.
35. $\operatorname{LCD}=24$; therefore $\frac{4}{6}$ has the higher value.
36. $\frac{8}{9}$ has the higher value; the numerator (8) is larger.
37. $\frac{1}{10}$ has the higher value; the denominator (10) is smaller.
38. $\frac{6}{15}$ has the higher value; the numerator (6) is larger.
39. $2 \frac{11}{12}$
40. $8 \frac{1}{15}$
41. $\frac{18}{125}$
42. $1 \frac{3}{25}$
43. $22 \frac{5}{6}$
44. $\frac{3}{50}$
45. $\frac{29}{25}$
46. $\frac{19}{21}$
47. $7 \frac{7}{32}$
48. $\frac{34}{8}$
49. $1 \frac{31}{40}$
50. $\frac{5}{27}$
51. $\frac{9}{2}$
52. $\frac{11}{16}$
53. $1 \frac{13}{20}$
54. $\frac{27}{8}$
55. $\frac{1}{12}$
56. $\frac{1}{30}$
57. $\frac{79}{5}$
58. $\frac{1}{24}$
59. 15
60. $1 \frac{1}{2}$
61. $13 \frac{4}{9}$
62. 1
63. $2 \frac{19}{24}$
64. $1 \frac{3}{5}$
65. $2 \frac{2}{19}$
66. $7 \frac{1}{6}$
67. $\frac{8}{15}$

Answers to Chapter Review

1. $1 \frac{2}{8}=1 \frac{1}{4}$
2. $\mathrm{LCD}=10 ; \frac{7}{10}$
3. $\frac{4}{36}=\frac{1}{9}$
4. $\frac{15}{300}=\frac{1}{20}$
5. $7 \frac{2}{4}=7 \frac{1}{2}$
6. $\mathrm{LCD}=36$;
7. $9 \frac{11}{32}$
8. 1
9. $3 \frac{4}{6}=3 \frac{2}{3}$
$\frac{234}{36}=6 \frac{18}{36}=6 \frac{1}{2}$
10. 14
11. 2
12. $2 \frac{3}{4}$
13. $\frac{30}{47}$
14. 10
15. 18
16. $4 \frac{3}{14}$
17. $22 \frac{5}{6}$
18. $6 \frac{7}{10}$
19. $140 \frac{1}{4}$
20. $4 \frac{1}{2}$
21. $\mathrm{LCD}=9 ; 106 \frac{8}{9}$
22. 27
23. $\frac{1}{16}$
24. $\frac{10}{16}=\frac{5}{8}$
25. 2
26. $\frac{2}{30}=\frac{1}{15}$
27. $\frac{3}{8}$
28. $2 \frac{1}{5}$
29. $\operatorname{LCD}=10 ; 13 \frac{2}{10}=13 \frac{1}{5}$
30. $\frac{12}{120}=\frac{1}{10}$
31. $\frac{14}{16}, \frac{7}{16}, \frac{5}{16}, \frac{3}{16}, \frac{1}{16}$
32. $\frac{7}{27}$
33. $\frac{5}{6}, \frac{5}{8}, \frac{5}{12}, \frac{5}{32}, \frac{5}{64}$
34. $\frac{50}{75}=\frac{2}{3}$
35. $\frac{2}{5}$ of water remains
36. $\frac{9}{40}$
37. $1 \frac{7}{8}$
38. $\frac{1}{5}$ of the dosage
39. $\frac{1}{6}$ of Ensure remains
40. 10
41. 24 tablets
42. $8 \frac{3}{4}$
43. 280 mL
44. $\frac{65}{4}$
45. $\mathrm{LCD}=20 ; \frac{11}{20}$
46. $\frac{1}{2}$
47. 84 hours
48. $\frac{42}{75}=\frac{14}{25}$
49. 700 mg
50. $\frac{2}{3}$
51. 75 doses
52. 2
53. $1 \frac{3}{4}$ bottles
54. $\frac{7}{18}$
55. $1 \frac{11}{21}$
56. 4
57. $8 \frac{2}{4}=8 \frac{1}{2}$
58. $\frac{47}{7}$
59. $\mathrm{LCD}=24 ; 26 \frac{7}{24}$
60. $1 \frac{1}{3}$
61. $1 \frac{3}{4}$
62. $\mathrm{LCD}=30 ; 1 \frac{13}{30}$
63. $24 \frac{6}{11}$
64. $\operatorname{LCD}=24 ; \frac{13}{24}$
65. $\mathrm{LCD}=10 ; 12 \frac{1}{5}$
66. $1 \frac{25}{50}=1 \frac{1}{2}$
67. $\mathrm{LCD}=4 ; \frac{88}{4}=22$
68. $\mathrm{LCD}=18 ; 31 \frac{1}{9}$
69. $7 \frac{1}{2}$

Lesson Plans for Fractions

OBJECTIVES

1. Compare the size of fractions.
2. Add fractions.
3. Subtract fractions.
4. Divide fractions.
5. Multiply fractions.
6. Reduce fractions to lowest terms.

KEY TERMS

- complex fraction, p. 7
- denominator, p. 6
- improper fraction, p. 7
- mixed number, p. 7
- numerator, p. 6
- proper fraction, p. 7
- whole numbers, p. 7

QUALITY AND SAFETY

- Quality Improvement
- Introduction, p. 6

CONCEPTS

THEME: Care Competencies

- Concept: Health Care Quality
- Exemplar: Advisory Bodies, p. 6
\qquad

STUDENT CHAPTER RESOURCES	
Cha 1	READ-Textbook (pp. 6-22) REVIEW—Evolve Resources - Drug Calculations Companion, version 5 ANSWER—Evolve Resources - Student Practice Problems
DCO	PRACTISE-Drug Calculations Online-Module 2

INSTRUCTOR CHAPTER RESOURCES

TB Test Bank

- To access the ExamView format, go to the Downloads section.
- Drug Calculations Comprehensive Test Bank-Chapter 1A

PPT PowerPoint Slides (Slides 1-26)

IC Images: The following images are available in the text:

- Figure 1-1. Diagram representing fractions of a whole. Five parts shaded out of the six parts
represent: $\frac{5}{6} \frac{\text { Numerator }}{\text { Denominator }}$
- Figure 1-2. Fraction pie charts.

DCO Drug Calculations Online-Module 2

ETC. - TEACH for Nurses

- Drug Label Glossary

CONTENT FOCUS	CONTENT HIGHLIGHTS	LEARNING ACTIVITIES
TYPES OF FRACTIONS REDUCING FRACTIONS ADDING FRACTIONS	There are several types of fractions, and nurses must know how to differentiate among them and know the fraction rules in regards to reducing and comparing them. Fractions are easier to comprehend when reduced to their lowest terms. The denominators of fractions must be the same in order to add them together.	- Activity \#1: For Small Group Activity, Large Group Activity, Clinical Activity, or Remediation Activity. Have the students bring their text to class. Divide the students up into groups of two and practise solving 10 practice questions from Chapter 1. - Online Activity: Continue the online journal by answering the question: "What types of fractions do I see in the clinical setting?" - Activity \#2: Clinical Activity. Bring needles of different lengths: $\frac{3}{8}, \frac{1}{2}, \frac{5}{8}$. Have the students change the fractional lengths to a common denominator so they can determine which needle is the shortest and the longest based on the fractions.
SUBTRACTING FRACTIONS MULTIPLYING FRACTIONS SUBTRACTING A FRACTION FROM A whole number SUBTRACTING FRACTIONS USING BORROWING	Just like adding fractions, the denominators of fractions must be the same to subtract one fraction from another. Fractions being multiplied do not need the same denominator. Set up the problem by changing the whole number to a fraction. If necessary, one (in the form of an equivalent fraction) may be added to the fraction so that subtraction is possible. Changing $5 \frac{1}{4}$ to $4 \frac{5}{4}$ does not change the value of the mixed number, but does allow the subtraction of a smaller fraction.	- Activity \#3: For Small Group Activity, Large Group Activity, Clinical Activity, or Remediation Activity. Bring needles of different lengths: $\frac{3}{8}, \frac{1}{2}, \frac{5}{8}$. Have the students draw three circles and divide one "pie" into two parts and two "pies" into eight parts. Shade the pies to represent the needle lengths. For example, one of the "pies" with eight parts will have three parts shaded and so on. Have the students compare and contrast the three "pies."
DIVIDING FRACTIONS	To divide fractions, the rule states to invert the second fraction and multiply.	

\qquad

IN-CLASS/ONLINE CASE STUDY

A nurse is recording the fluid intake for a patient and the volume of medication to administer. The following questions pertain to this situation.

1. The nurse notes that the patient has drunk half of the water in the water pitcher. The pitcher holds 900 millilitres (mL) of water. How many mL would the nurse record?

Answer: 450 mL

Rationale: $900 \mathrm{~mL} \times \frac{1}{2}=450 \mathrm{~mL}$
2. The nurse notes that $\frac{3}{4}$ of the intravenous (IV) fluids have infused in the last 12 hours. The IV bag contained 1000 mL of fluid at the beginning of the shift. How many mL would the nurse record for the IV intake?

Answer: 750 mL

Rationale: $1000 \mathrm{~mL} \times \frac{3}{4}=750 \mathrm{~mL}$

01 lesson Plans for Fractions

OBJECTIVES

1. Compare the size of fractions.
2. Add fractions.
3. Subtract fractions.
4. Divide fractions.
5. Multiply fractions.
6. Reduce fractions to lowest terms.

KEY TERMS

- complex fraction, p. 7
- denominator, p. 6
- improper fraction, p. 7
- mixed number, p. 7

QUALITY AND SAFETY

- Quality Improvement
- Introduction, p. 6

CONCEPTS

THEME: Care Competencies

- Concept: Health Care Quality
- Exemplar: Advisory Bodies, p. 6

STUDENT CHAPTER RESOURCES

Chap. 1 READ-Textbook (pp. 6-22)
REVIEW—Evolve Resources

- Drug Calculations Companion, version 5

ANSWER-Evolve Resources

- Student Practice Problems

DCO PRACTISE—Drug Calculations Online—Module 2
\qquad

NSTR	CTOR CHAPTER RESOURCES
TB	Test Bank - To access the ExamView format, go to the Downloads section. - Drug Calculations Comprehensive Test Bank-Chapter 1A
PPT	PowerPoint Slides (Slides 1-26)
IC	Images: The following images are available in the text: - Figure 1-1. Diagram representing fractions of a whole. Five parts shaded out of the six parts represent: $\frac{5}{6} \frac{\text { Numerator }}{\text { Denominator }}$ - Figure 1-2. Fraction pie charts.
DCO	Drug Calculations Online-Module 2
ETC.	- TEACH for Nurses - Drug Label Glossary

TEACHING STR	GIES	
CONTENT FOCUS	CONTENT HIGHLIGHTS	LEARNING ACTIVITIES
TYPES OF FRACTIONS REDUCING FRACTIONS ADDING FRACTIONS	There are several types of fractions, and nurses must know how to differentiate among them and know the fraction rules in regards to reducing and comparing them. Fractions are easier to comprehend when reduced to their lowest terms. The denominator of fractions must be the same in order to add them together.	- Activity \#1: For Small Group Activity, Large Group Activity, Clinical Activity, or Remediation Activity. Have the students bring their text to class. Ask the students to work in pairs to solve 10 practice questions from Chapter 1. - Online Activity: Continue the online journal by answering the question: "What types of fractions do I see in the clinical setting?" - Activity \#2: Clinical Activity. Bring needles of different lengths: $\frac{3}{8}, \frac{1}{2}, \frac{5}{8}$. Have the students change the fractional lengths to a common denominator so they can determine which needle is the shortest and the longest based on the fractions.
SUBTRACTING FRACTIONS MULTIPLYING FRACTIONS SUBTRACTING A FRACTION FROM A whole number SUBTRACTING FRACTIONS USING BORROWING	Just like adding fractions, the denominators of fractions must be the same to subtract one fraction from another. Fractions being multiplied do not need the same denominator. Set up the problem by changing the whole number to a fraction. If necessary, one (in the form of an equivalent fraction) may be added to the fraction so that subtraction is possible. Changing $5 \frac{1}{4}$ to $4 \frac{5}{4}$ does not change the value of the mixed number, but does allow the subtraction of a smaller fraction.	- Activity \#3: For Small Group Activity, Large Group Activity, Clinical Activity, or Remediation Activity. Bring needles of different lengths: $\frac{3}{8}, \frac{1}{2}, \frac{5}{8}$. Have the students draw three circles and divide one "pie" into two parts and two "pies" into eight parts. Shade the pies to represent the needle lengths. For example, one of the "pies" with eight parts will have three parts shaded and so on. Have the students compare and contrast the three "pies."
DIVIDING FRACTIONS	To divide fractions, the rule states to invert the second fraction and multiply.	

\qquad

IN-CLASS/ONLINE CASE STUDY

A nurse is recording the fluid intake for a patient and the volume of medication to administer. The following questions pertain to this situation.

1. The nurse notes that the patient has drunk half of the water in the water pitcher. The pitcher holds 900 millilitres (mL) of water. How many mL would the nurse record?

Answer: 450 mL

Rationale: $900 \mathrm{~mL} \times \frac{1}{2}=450 \mathrm{~mL}$
2. The nurse notes that $\frac{3}{4}$ of the intravenous (IV) fluids have infused in the last 12 hours. The IV bag contained 1000 mL of fluid at the beginning of the shift. How many mL would the nurse record for the IV intake?

Answer: 750 mL

Rationale: $1000 \mathrm{~mL} \times \frac{3}{4}=750 \mathrm{~mL}$

